Problem 7.11#

The global weak form of the dynamic heat equation is given in Eqn. 7.80 as

\[\begin{equation*} \int_0^1 \tilde{\theta} \, \partial_t \theta \: \mathrm{d}x = - \int_0^1 \alpha\, ( \partial_x\tilde{\theta} )\,( \partial_x\theta ) \: \mathrm{d}x \: + \: \int_0^1 \tilde{\theta}\, h\, \mathrm{d}x \: + \alpha\, \tilde{\theta} \, \partial_x \theta \, |_0^1 \quad. \end{equation*}\]

Writing the temperature field, \(\theta(x,\,t)\), and test function, \(\tilde{\theta}(x,\,t)\), as in Eqns 7.26 and 7.23,

\[\begin{align*} \theta(x,\,t) &= \sum_{B=1}^n d_B\,N_B(x) \:+\: \theta_1 N_{n+1}(x)\\ \tilde{\theta}(x,\,t) &= \sum_{A=1}^n c_A\,N_A(x) \end{align*}\]

we may then express the temporal gradients of these functions:

\[\begin{align*} \partial_t \theta(x,\,t) &= \sum_{B=1}^n \dot{d}_B\,N_B(x) \quad, \\ \partial_x \theta(x,\,t) &= \sum_{B=1}^n d_B\, \partial_x N_B(x) \:+\: \theta_1 \partial_x N_{n+1} \quad, \\ \partial_x \tilde{\theta}(x,\,t) &= \sum_{A=1}^n c_A\,\partial_x N_A \quad, \end{align*}\]

where a dot above a variable indicates a derivative with respect to time. Note here that only the weights \(c_A\) and \(d_B\) are time dependent, while only the shape functions \(N_i\) are spatially-varying. Finally, \(\theta_1\) has no time dependence due to the boundary condition 7.81,

\[\begin{equation*} \theta(1,\,t) = \theta_1 \quad. \end{equation*}\]

Substituting in these summations to the heat equation produces

\[\begin{align*} \int_0^1 \left(\sum_{A=1}^n c_A\,N_A \right) \, &\left( \sum_{B=1}^n \dot{d}_B\,N_B \right) \: \mathrm{d}x = \\ - &\int_0^1 \alpha\, \left( \sum_{A=1}^n c_A\,\partial_x N_A \right) \,\left(\sum_{B=1}^n d_B\, \partial_x N_B \:+\: \theta_1 \partial_x N_{n+1} \right) \: \mathrm{d}x \: \\ + \: &\int_0^1 \sum_{A=1}^n c_A\,N_A \, h\, \mathrm{d}x \\ \: + &\alpha\, \left[ \tilde{\theta} \, \partial_x \theta \,\right]_0^1 \quad. \end{align*}\]

Let us consider the different terms separately:

Left-hand side#

The left-hand side can be re-ordered by removing the weights, which aren’t spatially dependent, from the integral:

\[\begin{align*} &\int_0^1 \left(\sum_{A=1}^n c_A\,N_A \right) \, \left( \sum_{B=1}^n \dot{d}_B\,N_B(x) \right) \: \mathrm{d}x \\ &= \sum_{A=1}^n \sum_{B=1}^n c_A\,\dot{d}_B\int_0^1 N_A(x) \,N_B(x) \: \mathrm{d}x \\ &= \sum_{A=1}^n \sum_{B=1}^n c_A \, M_{AB} \, \dot{d}_B \\ \end{align*}\]

Right-hand side - Term 1:#

We can similarly rearrange

\[\begin{align*} - &\int_0^1 \alpha\, \left( \sum_{A=1}^n c_A\,\partial_x N_A \right) \,\left(\sum_{B=1}^n d_B\, \partial_x N_B \:+\: \theta_1 \partial_x N_{n+1} \right) \: \mathrm{d}x \\ = - &\int_0^1 \alpha\, \left( \sum_{A=1}^n c_A\,\partial_x N_A \right) \,\left(\sum_{B=1}^n d_B\, \partial_x N_B \right) \:+\: \alpha\, \left( \sum_{A=1}^n c_A\,\partial_x N_A \right) \theta_1 \partial_x N_{n+1} \: \mathrm{d}x \\ = - & \sum_{A=1}^n \sum_{B=1}^n c_A d_B \int_0^1 \alpha\, \left( \,\partial_x N_A \right) \,\left(\, \partial_x N_B \right) \: \mathrm{d}x \:-\: \sum_{A=1}^n c_A \int_0^1 \alpha\, \left( \,\partial_x N_A \right) \theta_1 \left( \partial_x N_{n+1} \right) \: \mathrm{d}x \end{align*}\]

With Eqn. 7.86 this can then be written as

\[\begin{align*} = - & \sum_{A=1}^n \sum_{B=1}^n c_A K_{AB}\, d_B \:-\: \sum_{A=1}^n c_A \,\theta_1 \int_0^1 \alpha\, \left( \,\partial_x N_A \right) \left( \partial_x N_{n+1} \right) \: \mathrm{d}x \end{align*}\]

Right-hand side - Term 2:#

\[\begin{align*} &\int_0^1 \sum_{A=1}^n c_A\,N_A \, h\, \mathrm{d}x \\ = & \sum_{A=1}^n c_A \int_0^1 \,N_A \, h\, \mathrm{d}x \\ \end{align*}\]

Right-hand side - Term 3:#

Upon imposing the constraint of 7.21 that

\[\begin{equation*} \tilde{\theta}(1) = 0\quad, \end{equation*}\]

this term reduces to

\[\begin{align*} \alpha\, \left[ \tilde{\theta} \, \partial_x \theta \,\right]_0^1 &= \alpha(1)\, \tilde{\theta}(1) \, \partial_x \theta(1) - \alpha(0)\, \tilde{\theta}(0) \, \partial_x \theta(0) \\ &= - \alpha(0) \, \tilde{\theta}(0) \, \partial_x \theta(0) \end{align*}\]

and using the boundary condition in Eqn 7.82 that

\[\begin{equation*} \partial_x\theta(0,\,t) = - H_0 \quad, \end{equation*}\]

this becomes

\[\begin{align*} &= \alpha(0) \, H_0 \, \tilde{\theta}(0) \\ &= \sum_{A=1}^n c_A \, N_A(0)\, \alpha(0) \, H_0 \end{align*}\]

Re-assembling the equation#

We can now write our global heat equation as

\[\begin{align*} \sum_{A=1}^n \sum_{B=1}^n c_A \, M_{AB} \, \dot{d}_B = - & \sum_{A=1}^n \sum_{B=1}^n c_A K_{AB}\, d_B \:-\: \sum_{A=1}^n c_A \,\theta_1 \int_0^1 \alpha\, \left( \,\partial_x N_A \right) \left( \partial_x N_{n+1} \right) \: \mathrm{d}x \\ + & \sum_{A=1}^n c_A \int_0^1 \,N_A \, h\, \mathrm{d}x + \sum_{A=1}^n c_A \, N_A(0)\, \alpha(0) \, H_0 \quad. \end{align*}\]

By moving the term containing the diffusivity matrix to the LHS, we may write this as

\[\begin{align*} \sum_{A=1}^n c_A \left\{ \sum_{B=1}^n \, M_{AB} \, \dot{d}_B + \sum_{B=1}^n K_{AB}\, d_B \right\} = \sum_{A=1}^n c_A \Big\{&- \,\theta_1 \int_0^1 \alpha\, \left( \,\partial_x N_A \right) \left( \partial_x N_{n+1} \right) \: \mathrm{d}x \\ &+ \int_0^1 \,N_A \, h\, \mathrm{d}x + \, N_A(0)\, \alpha(0) \, H_0 \Big\} \quad. \end{align*}\]

which can be simplified to

\[\begin{align*} \sum_{A=1}^n c_A \left\{ \sum_{B=1}^n \, M_{AB} \, \dot{d}_B + \sum_{B=1}^n K_{AB}\, d_B \right\} = \sum_{A=1}^n c_A F_A \quad. \end{align*}\]

in which

\[\begin{equation*} F_A = - \,\theta_1 \int_0^1 \alpha\, \left( \,\partial_x N_A \right) \left( \partial_x N_{n+1} \right) \: \mathrm{d}x + \int_0^1 \,N_A \, h\, \mathrm{d}x + \, N_A(0)\, \alpha(0) \, H_0 \end{equation*}\]

Note here the minor differences between the definition above and Eqn 7.87

Probing the test function#

For the weak form to hold, the equations must hold for any test function \(\tilde{\theta}\). Hence, we can probe the system of equations for different weak functions. This means that for any \(C_A\)

\[\begin{align*} \sum_{A=1}^n c_A \left\{ \sum_{B=1}^n \, M_{AB} \, \dot{d}_B + \sum_{B=1}^n K_{AB}\, d_B \right\} = \sum_{A=1}^n c_A F_A \quad. \end{align*}\]

must hold. To probe this, let us consider each case \(i = 1, n\) for which

\[\begin{equation*} C_A = \begin{cases} 1 & A=i \\ 0 & A\ne i \end{cases} \quad. \end{equation*}\]

For this to hold, it requires that

\[\begin{align*} \sum_{B=1}^n \, M_{AB} \, \dot{d}_B + \sum_{B=1}^n K_{AB}\, d_B = F_A \quad \end{align*}\]

for every \(A\).