Problem 7.8

Problem 7.8#

We seek the inverse of the mapping defined in 7.55,

\[\begin{equation*} x(\xi) = \sum_{a=1}^2 x_{A+a-1} N_a ( \xi) \end{equation*}\]

where

\[\begin{equation*} N_a(\xi) = \frac{1}{2} \left[ 1 + (-1)^a \xi \right] . \end{equation*}\]

To do this, let us write out the mapping explicitly:

\[\begin{align*} x(\xi) &= x_{A} N_1 ( \xi) + x_{A+1} N_2 ( \xi) \quad, \\ x(\xi) &= \frac{1}{2} \Big( x_{A} \left[ 1 - \xi \right] + x_{A+1} \left[ 1 + \xi \right] \Big). \end{align*}\]

Multiplying by 2 and collecting terms this rearranges to

\[\begin{align*} 2 x = x_{A} + x_{A+1} + \xi \left( x_{A+1} - x_{A} \right) \end{align*}\]

and therefore

\[\begin{align*} \xi = \frac{ 2 x - x_{A} - x_{A+1} } { x_{A+1} - x_{A} } = \frac{ 2 x - x_{A} - x_{A+1} } { \Delta x_{A} } \end{align*}\]

as required. We can then see that at \(x = x_A\) and \(x = x_{A+1}\) this becomes

\[\begin{align*} \xi(x_A) &= \frac{ x_{A} - x_{A+1} } { x_{A+1} - x_{A} } = - 1 \\ \xi(x_{A+1}) &= \frac{ x_{A+1} - x_{A} } { x_{A+1} - x_{A} } = +1 \quad . \end{align*}\]