Problem 6.2

Problem 6.2#

Here we will use the Taylor expansions listed in Problem 6.1. As in Problem 6.1 we combine multiples of these Taylor series, such that

\[\begin{align*} -f(x+2\Delta x) \,+\, &16\,f(x+\Delta x) \,-\, 30\,f(x) \,+\, 16\,f(x-\Delta x) \,-\, f(x-2\Delta x) = \\ - &f(x) -2\Delta x\,\frac{df(x)}{dx} -2\,(\Delta x)^2\,\frac{d^2f(x)}{dx^2} -\frac{8}{6}\,(\Delta x)^3\,\frac{d^3f(x)}{dx^3} -\mathcal{O}(\Delta x)^4 \\ + &16 f(x) + 16\,\Delta x\,\frac{df(x)}{dx} + 8\,(\Delta x)^2\,\frac{d^2f(x)}{dx^2} +\frac{8}{3}\,(\Delta x)^3\,\frac{d^3f(x)}{dx^3} +\mathcal{O}(\Delta x)^4 \\ - &30 f(x) \\ + &16 f(x) -16\,\Delta x\,\frac{df(x)}{dx} +8\,(\Delta x)^2\,\frac{d^2f(x)}{dx^2} -\frac{8}{3}\,(\Delta x)^3\,\frac{d^3f(x)}{dx^3} +\mathcal{O}(\Delta x)^4 \\ - &f(x) +2\Delta x\,\frac{df(x)}{dx} -2\,(\Delta x)^2\,\frac{d^2f(x)}{dx^2} +\frac{8}{6}\,(\Delta x)^3\,\frac{d^3f(x)}{dx^3} -\mathcal{O}(\Delta x)^4 \quad, \end{align*}\]

which simplifies to

\[\begin{equation*} -f(x+2\Delta x) + 16 f(x+\Delta x) - 30 f(x) + 16 f(x-\Delta x) - f(x-2\Delta x) = 12(\Delta x)^2 \frac{d^2f(x)}{dx^2} +\mathcal{O}(\Delta x)^4 \quad, \end{equation*}\]

and therefore dividing by \(12\,(\Delta x)^2\) yields

\[\begin{align*} \frac{d^2f(x)}{dx^2} &= \frac{1}{(\Delta x)^2 } \left[ -\frac{1}{12}\,f(x+2\Delta x) + \frac{4}{3}\,f(x+\Delta x) - \frac{5}{2}\,f(x) + \frac{4}{3}\,f(x-\Delta x) - \frac{1}{12}\,f(x-2\Delta x) \right] \\ &+ \frac{\mathcal{O}(\Delta x)^4}{(\Delta x)^2} \quad. \end{align*}\]

It is important to note here that due to the division by \((\Delta x)^2\), the error is of order \(\frac{\mathcal{O}(\Delta x)^4}{(\Delta x)^2} = \mathcal{O}(\Delta x)^2\).