Problem 6.14

Problem 6.14#

We start with relationship for the standing wave in 6.114,

\[\begin{equation*} \sin(\omega \Delta t) = \beta \ell \Delta k \Delta t = \beta\, k_\ell\, \Delta t \quad. \end{equation*}\]

Next, take the derivative with respect to the wavenumber, \(k\), yielding

\[\begin{equation*} \frac{\partial\omega}{\partial k} \Delta t \, \cos(\omega \Delta t) = \beta \ell \Delta k \Delta t \quad, \end{equation*}\]

which reduces to

\[\begin{equation*} \frac{\partial\omega}{\partial k} = \frac{ \beta\, k_\ell}{\cos(\omega \Delta t)} \quad. \end{equation*}\]