Problem 7.7#
We seek the jacobian (\(\frac{\partial x}{\partial \xi}\)) of the the spatial mapping
\[\begin{equation*}
x(\xi) = \sum_{a=1}^2 x_{A+a-1} N_a ( \xi)
\end{equation*}\]
with linear shape functions
\[\begin{equation*}
N_a(\xi) = \frac{1}{2} \left[ 1 + (-1)^a \xi \right].
\end{equation*}\]
First, let us take the derivative of the mapping with respect to \(\xi\).
\[\begin{equation*}
\frac{d x}{d\xi} = \sum_{a=1}^2 x_{A+a-1} \frac{d}{d\xi} N_a ( \xi) \quad.
\end{equation*}\]
We therefore need the derivatives of the shape functions:
\[\begin{equation*}
\frac{d}{d\xi} N_a(\xi) = \frac{1}{2} (-1)^a
\end{equation*}\]
such that the derivatives of the two shape functions are
\[\begin{align*}
\frac{d N_1}{d\xi} = -\frac{1}{2} \\
\frac{d N_2}{d\xi} = +\frac{1}{2}
\end{align*}\]
We may then write the summation in the jacobian explicitly as
\[\begin{align*}
\frac{d x}{d\xi} &= x_{A} \frac{d N_1}{d\xi} + x_{A+1} \frac{d N_2}{d\xi} \\
&= \frac{1}{2} \left[ x_{A+1} - x_{A} \right] \\
&= \frac{1}{2} \Delta x_{A}
\end{align*}\]
as required.