Problem 6.1

Problem 6.1#

We begin with the following Taylor expansions

\[\begin{align*} f(x+\Delta x) = &f(x) +\Delta x\,\frac{df(x)}{dx} +\frac{1}{2!}\,(\Delta x)^2\,\frac{d^2f(x)}{dx^2} +\frac{1}{3!}\,(\Delta x)^3\,\frac{d^3f(x)}{dx^3} +\frac{1}{4!}\,(\Delta x)^4\,\frac{d^4f(x)}{dx^4} +\cdots \\ f(x-\Delta x) = &f(x) -\Delta x\,\frac{df(x)}{dx} +\frac{1}{2!}\,(\Delta x)^2\,\frac{d^2f(x)}{dx^2} -\frac{1}{3!}\,(\Delta x)^3\,\frac{d^3f(x)}{dx^3} +\frac{1}{4!}\,(\Delta x)^4\,\frac{d^4f(x)}{dx^4} -\cdots \\ f(x+2\Delta x) = &f(x) +2\Delta x\,\frac{df(x)}{dx} +\frac{1}{2!}\,(2\Delta x)^2\,\frac{d^2f(x)}{dx^2} +\frac{1}{3!}\,(2\Delta x)^3\,\frac{d^3f(x)}{dx^3} +\frac{1}{4!}\,(2\Delta x)^4\,\frac{d^4f(x)}{dx^4} +\cdots \\ f(x-2\Delta x) = &f(x) -2\Delta x\,\frac{df(x)}{dx} +\frac{1}{2!}\,(2\Delta x)^2\,\frac{d^2f(x)}{dx^2} -\frac{1}{3!}\,(2\Delta x)^3\,\frac{d^3f(x)}{dx^3} +\frac{1}{4!}\,(2\Delta x)^4\,\frac{d^4f(x)}{dx^4} -\cdots \end{align*}\]

where each of these expansions has been truncated at \(\mathcal{O}(\Delta x)^5\). Now let us combine these expansions together as follows

\[\begin{align*} f(x-2\Delta x) + 8 &f(x+\Delta x) - 8 f(x-\Delta x) - f(x+2\Delta x) = \\ &f(x) -2\,\Delta x\,\frac{df(x)}{dx} + 2\,(\Delta x)^2\,\frac{d^2f(x)}{dx^2} -\frac{8}{6}\,(\Delta x)^3\,\frac{d^3f(x)}{dx^3} +\frac{2}{3}\,(\Delta x)^4\,\frac{d^4f(x)}{dx^4} \\ + 8 &f(x) +8 \Delta x\,\frac{df(x)}{dx} +4\,(\Delta x)^2\,\frac{d^2f(x)}{dx^2} + \frac{8}{6}\,(\Delta x)^3\,\frac{d^3f(x)}{dx^3} +\frac{1}{3}\,(\Delta x)^4\,\frac{d^4f(x)}{dx^4} \\ - 8 &f(x) +8 \Delta x\,\frac{df(x)}{dx} -4\,(\Delta x)^2\,\frac{d^2f(x)}{dx^2} + \frac{8}{6}\,(\Delta x)^3\,\frac{d^3f(x)}{dx^3} -\frac{1}{3}\,(\Delta x)^4\,\frac{d^4f(x)}{dx^4} \\ - &f(x) -2\Delta x\,\frac{df(x)}{dx} -2\,(\Delta x)^2\,\frac{d^2f(x)}{dx^2} -\frac{8}{6}\,(\Delta x)^3\,\frac{d^3f(x)}{dx^3} -\frac{2}{3}\,(\Delta x)^4\,\frac{d^4f(x)}{dx^4} \\ +& \mathcal{O}(\Delta x)^5 \quad . \end{align*}\]

Evidently all terms on the right-hand side cancel out, except for the \(\frac{df(x)}{dx}\) terms, yielding

\[\begin{equation*} 12\,\Delta x\,\frac{df(x)}{dx} + \mathcal{O}(\Delta x)^5 = f(x-2\Delta x) + 8 f(x+\Delta x) - 8 f(x-\Delta x) - f(x+2\Delta x) \end{equation*}\]

and therefore

\[\begin{equation*} \frac{df(x)}{dx} = \frac{f(x-2\Delta x) + 8 f(x+\Delta x) - 8 f(x-\Delta x) - f(x+2\Delta x)}{12\,\Delta x} - \mathcal{O}(\Delta x)^4 \quad \end{equation*}\]

approximates the first derivative of \(f(x)\) to 4th-order accuracy, noting that the division by \(\Delta x\) reduces the error from order \(\mathcal{O}(\Delta x)^5\) to \(\mathcal{O}(\Delta x)^4\).

Similarly, we may consider the Taylor expansions:

\[\begin{align*} f(x+ \frac{3}{2}\Delta x) \ = \ f(x) + \frac{3}{2}\,\Delta x\,\frac{df(x)}{dx} +\frac{1}{2!}\,(\frac{3}{2}\,\Delta x)^2\,\frac{d^2f(x)}{dx^2} +\frac{1}{3!}\,(\frac{3}{2}\,\Delta x)^3\,\frac{d^3f(x)}{dx^3} \\ +\: \frac{1}{4!}\,(\frac{3}{2}\,\Delta x)^4\,\frac{d^4f(x)}{dx^4} +\mathcal{O}(\Delta x)^5 \end{align*}\]
\[\begin{align*} f(x-\frac{3}{2}\Delta x) \ = \ f(x) -\frac{3}{2}\,\Delta x\,\frac{df(x)}{dx} +\frac{1}{2!}\,(\frac{3}{2}\,\Delta x)^2\,\frac{d^2f(x)}{dx^2} -\frac{1}{3!}\,(\frac{3}{2}\,\Delta x)^3\,\frac{d^3f(x)}{dx^3} \\ +\: \frac{1}{4!}\,(\frac{3}{2}\,\Delta x)^4\,\frac{d^3f(x)}{dx^4} -\mathcal{O}(\Delta x)^5 \end{align*}\]
\[\begin{align*} f(x+\frac{1}{2}\,\Delta x) \ = \ f(x) +\frac{1}{2}\Delta x\,\frac{df(x)}{dx} +\frac{1}{2!}\,(\frac{1}{2}\,\Delta x)^2\,\frac{d^2f(x)}{dx^2} +\frac{1}{3!}\,(\frac{1}{2}\,\Delta x)^3\,\frac{d^3f(x)}{dx^3}\\ +\: \frac{1}{4!}\,(\frac{1}{2}\,\Delta x)^4\,\frac{d^4f(x)}{dx^4} +\mathcal{O}(\Delta x)^5 \end{align*}\]
\[\begin{align*} f(x-\frac{1}{2}\,\Delta x) \ = \ f(x) -\frac{1}{2}\,\Delta x\,\frac{df(x)}{dx} +\frac{1}{2!}\,(\frac{1}{2}\,\Delta x)^2\,\frac{d^2f(x)}{dx^2} -\frac{1}{3!}\,(\frac{1}{2}\,\Delta x)^3\,\frac{d^3f(x)}{dx^3}\\ +\: \frac{1}{4!}\,(\frac{1}{2}\,\Delta x)^4\,\frac{d^4f(x)}{dx^4} - \mathcal{O}(\Delta x)^5 \quad. \end{align*}\]

Let us combine multiples of these expansions, each up to order \(\mathcal{O}(\Delta x)^5\), as follows:

\[\begin{align*} - f(x+\frac{3}{2}\,\Delta x) \, + \, &27 f(x+\frac{1}{2}\,\Delta x) \, - \, 27 f(x-\frac{1}{2}\,\Delta x) \, + \, f(x-\frac{3}{2}\,\Delta x) = \\ - \, &f(x) - \frac{3}{2}\Delta x\,\frac{df(x)}{dx} -\frac{9}{8}\,(\Delta x)^2\,\frac{d^2f(x)}{dx^2} -\frac{9}{16}\,(\Delta x)^3\,\frac{d^3f(x)}{dx^3} - \frac{27}{128}\,(\Delta x)^4\,\frac{d^4f(x)}{dx^4} \\ +\, 27\, &f(x) +\frac{27}{2}\,\Delta x\,\frac{df(x)}{dx} +\frac{27}{8}\,(\Delta x)^2\,\frac{d^2f(x)}{dx^2} +\frac{9}{16}\,(\Delta x)^3\,\frac{d^3f(x)}{dx^3} + \frac{9}{128}\,(\Delta x)^4\,\frac{d^4f(x)}{dx^4} \\ - 27\, &f(x) +\frac{27}{2}\,\Delta x\,\frac{df(x)}{dx} -\frac{27}{8}\,(\Delta x)^2\,\frac{d^2f(x)}{dx^2} +\frac{9}{16}\,(\Delta x)^3\,\frac{d^3f(x)}{dx^3} -\frac{9}{128}\,(\Delta x)^4\,\frac{d^4f(x)}{dx^4} \\ +\, & f(x) -\frac{3}{2}\,\Delta x\,\frac{df(x)}{dx} +\frac{9}{8}\,(\Delta x)^2\,\frac{d^2f(x)}{dx^2} -\frac{9}{16}\,(\Delta x)^3\,\frac{d^3f(x)}{dx^3} +\frac{27}{128}\,(\Delta x)^4\,\frac{d^4f(x)}{dx^4} \\ +\, & \mathcal{O}(\Delta x)^5\quad \end{align*}\]

Again, we observe that all right-hand-side terms of \(f(x)\), \(\frac{d^2f(x)}{dx^2}\) and \(\frac{d^3f(x)}{dx^3}\) cancel out, leaving only terms of \(\frac{df(x)}{dx}\) such that

\[\begin{equation*} - f(x+\frac{3}{2}\,\Delta x) + 27 f(x+\frac{1}{2}\,\Delta x) - 27 f(x-\frac{1}{2}\,\Delta x) + f(x-\frac{3}{2}\,\Delta x) = 24 \Delta x\,\frac{df(x)}{dx} +\mathcal{O}(\Delta x)^5 \quad, \end{equation*}\]

and so dividing by \(24\,\Delta x\) yields, as required

\[\begin{equation*} \frac{df(x)}{dx}+\mathcal{O}(\Delta x)^4 = \frac{1}{\Delta x} \left[ -\frac{1}{24} f(x+\frac{3}{2}\,\Delta x) + \frac{9}{8} f(x+\frac{1}{2}\,\Delta x) - \frac{9}{8} f(x-\frac{1}{2}\,\Delta x) + \frac{1}{24} f(x-\frac{3}{2}\,\Delta x) \right] \quad. \end{equation*}\]